50(t)=-16t^2+63t+4

Simple and best practice solution for 50(t)=-16t^2+63t+4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 50(t)=-16t^2+63t+4 equation:



50(t)=-16t^2+63t+4
We move all terms to the left:
50(t)-(-16t^2+63t+4)=0
We get rid of parentheses
16t^2-63t+50t-4=0
We add all the numbers together, and all the variables
16t^2-13t-4=0
a = 16; b = -13; c = -4;
Δ = b2-4ac
Δ = -132-4·16·(-4)
Δ = 425
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{425}=\sqrt{25*17}=\sqrt{25}*\sqrt{17}=5\sqrt{17}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-5\sqrt{17}}{2*16}=\frac{13-5\sqrt{17}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+5\sqrt{17}}{2*16}=\frac{13+5\sqrt{17}}{32} $

See similar equations:

| -2-4x=7 | | 9p+2=3 | | 4(d+4)=2(2d-3) | | 4b=-53 | | 2m-1=5m+8 | | 2+5w=32 | | 5r-(2r+8)=10 | | -2(×+3)=2x-6 | | 6m+5-5m=10-4m+20 | | 6p+5=11 | | x+2+x-2+x+2+x-2=180 | | x-21=17+x | | -1-3=h | | 1822-(-f)=91 | | C=10+0.44n | | -192=-6(6x-4 | | 3y+3=2y+8 | | -3(-7x-4)=5(3x+11)-1 | | 125m-75m+38,800=41,000-150m | | -5-2=m | | k+2.34=0.38 | | 33x+7=360 | | 23x+7=360 | | 20x+14=360 | | 20x+14=3360 | | x=312x+20x | | 3(x-1.5)=2x-1 | | 3-d=4 | | -4-1=a | | 7+2/5z=11 | | 6(5x-6)=366 | | 14-9x=338 |

Equations solver categories